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Investigation of the aspects of Limit Cycle Walking (LCW) is still a relatively 

unexplored field of study in comparison whit ZMP based walking robots. In this paper, 

for a limit cycle walker, a receding horizon based controller is implemented. The biped 

robot model is considered an under-actuated hybrid planar system with five degrees of 

freedom having two actuators. The model is hybrid because of the impacts of the foot 

with ground. So, there is a discontinuity (jumps) in the states of the robot and controller 

should tackle this problem. The main idea of control design consists in the choice of 

particular trajectories for the directly controlled degree of freedoms (using receding 

horizon scheme) for which the dynamics of indirectly controlled DOF (un-actuated 

coordinate) of the system tracks a desired trajectory. The controller is implemented to 

control the whole system to sustain its stable cyclic walking. This approach avoids the 

need to use Poincare-like argumentation in the proof of stability of limit cycles. 

Simulation results demonstrate the effectiveness of the method. 

1. Introduction 

Building of a realistic biped robot which can walk around its environment in a stable, efficient, 

and naturalistic manner has long been a goal of roboticists[1]. Generally the motion planning and 

control of biped robots is a very challenging problem because of; high degrees of freedom, high 

nonlinear dynamics, under-actuation and the hybrid nature of their dynamic resulting from impacts 

with the ground which produces discontinuities (jumps) in the states of the robot. 

Previous studies on the modeling and control of bipeds can be classified into two categories:  

1. Zero Moment Point (ZMP) based walking robots  

2. Passive-dynamic walkers and limit-cycle walkers 
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The first class of bipeds is controlled using the “Zero Moment Point” (ZMP) principle [2]. Today, 

this principle is a well-known concept and it is used in the gait control of most of the advanced bipedal 

robots, like Honda ASIMO [3] and HRP [4]. The motions which are achievable in this class of bipeds 

are highly conservative, inefficient, and unnatural looking.  

The second broad class is a relatively new. Limit Cycle Walking is a nominally periodic sequence 

of steps that is stable as a whole but not locally stable at every instant in time. Inspired by the 

completely passive walkers of McGeer, 1990 [5], these robots forgo full actuation and allow gravity 

and natural dynamics to play a large part in the generation of motion. They may be completely 

passive, or partially actuated. Even with partial actuation, the motions generated can be life-like and 

highly efficient energetically [6]. McGeers pioneering work has inspired the creation of limit cycle 

walkers all over the world.  The use of high feedback gains in ZMP based robots actively fights the 

natural dynamics of the system at the cost of extra energy expenditure. In contrast, Limit Cycle 

Walking allows the natural dynamics of a walking system to help ensure convergence to the desired 

motion. Limit cycle walkers do very well in terms of energy efficiency but still has limited disturbance 

rejection capabilities [7].  

To summarize, while the potential of Limit Cycle Walking is remarkable, it is still a relatively 

unexplored field of study, and the operability of Limit Cycle Walking robots is not as developed as 

in robots based on the ZMP (or similar) concept. 

The Human walking approach is based on optimal algorithms, which use some goals and 

constraints to displace the body from one point to another, while considering and predicting the 

environment changes, in order to decide adaptively to accomplish safe and without falling walk. A 

suitable way of imitating this behavior for motion control of the biped robot and online motion 

synthesis is the receding-horizon optimal control -also known Model Predictive Control (MPC) - 

techniques [8]. In recent years, researchers have applied this method for trajectory planning and 

control of biped robots [9]. Historically, this approach has been applied to large systems such as 

chemical plants whose dynamics were slow enough to be compatible with the required optimization 

time. The exponential growth of available computer power at constant cost has made it progressively 

possible to apply these methods to more rapid processes.  

In this paper a receding horizon scheme is exploited for a three link limit cycle walker. A model 

for biped robot is considered which its characteristics are; planar, hybrid, nonlinear and under-

actuated. The impact dynamic is considered in the modeling and a map is obtained to relate the states 

before and after impact. The contribution of this work is that, for above mentioned model a dynamic 
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balance controller is implemented and investigated based on receding horizon scheme. The controller 

controls the whole system to sustain its stable cyclic walking. One of the advantages of the approach 

is that avoids the need to use Poincar´e-like argumentation in the proof of stability of limit cycles. 

Poincar´e-like method needs high cost offline computations.  

2. Modeling 

The modeling approach presented in this paper is closely related to the work ofWestervelt et al., 

in 2007 [10]. The three-link walker provides the simplest example where torso stabilization is 

important. The robot is considered bipedal and planar with five degrees of freedom. It is assumed to 

have two telescopic legs that are connected at hip by ideal revolute joints and are carrying the torso 

segment. There is a mass at the center of each leg and two masses at the hips and the end of a torso 

segment, respectively. Two torques, u1 and u2 are applied between the torso and the stance leg, and 

the torso and the swing leg, respectively. There is no torque at the contact point of the leg with the 

ground. The representative model structure is shown in Figure 1. 

 

Figure 1. Schematic view of the three-link limit cycle walker 

 

It is assumed that the walking cycle consists of successive phases of single support and double 

support taking place in an infinitesimal length of time. The model of the biped robot thus consists of 

two parts: the dynamics of the robot during the swing phase, and an impulse model of the contact 

event.  

3. Dynamic equations of Swing Phase 

During the swing phase of the motion, the stance leg is acting as a pivot, and thus there are only 

three degrees of freedom. Using Lagrange formulation [11], the mathematical model describing the 

biped moving in the sagittal plane is as follows 
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extFSuqGqqNqqM  )(),()( 
 (1) 

where ( )M q  is the inertia matrix, ( , )N q q  contains the centrifugal and Coriolis forces terms, ( )G q  is 

the vector of gravitational forces, 1 2[ ]Tu u u is the vector of control inputs, S is a torque distribution 

matrix, q is the vector of generalized coordinates (Figure 1).
extF is torques generated by external forces 

such as ground contacts. In single support phase it can be expressed as 

1 ( )T

extF J q   (2) 

Where 1 ( )TJ q  and   represent the Jacobian matrix of the holonomic contact constraints, and the 

Lagrange multipliers of contact forces, respectively. 

4. Dynamic Equations of Impact with Ground 

The end of the swing phase is characterized by a collision between the swing foot and the ground 

which is modeled as a contact between two rigid bodies. There are many rigid impact models in the 

literature, and under reasonable hypotheses all of them can be used to obtain an expression for the 

velocity of the generalized coordinates after the impact of the swing leg with the walking surface in 

terms of the velocity and position just before the impact. The model from [12] is used here. The 

contact model requires the full five degrees of freedom of the robot. This gives once again a model 

of the form 

exteee FSuqGqqNqqM  )(),()( 
 (3) 

We derive the impact equations under assumptions: 1) the impact takes place over an 

infinitesimally small period of time; 2) the external forces during the impact can be represented by 

impulses; 3) impulsive forces may result in an instantaneous change in the velocities of the 

generalized coordinates, but the positions remain continuous; and 4) the torques supplied by the 

actuators are not impulsional. With these assumptions, (3) is integrated over the “duration” of the 

impact to obtain 

)())(( 2 qJFqqqM T
exte   

 
(4) 

where ( )
t

ext ext
t

F F d  



   is the result of integrating the contact impulse over the impact duration, 

q  is the velocity just after the impact and q  is the velocity just before the impact. Since the positions 

do not change during the impact, q q  .
2( )J q  is the Jacobian matrix of the cartesiancoordinates of 
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the swing leg foot. Eq. (4) involves five constraints and seven unknowns  
extF and q . Two additional 

equations may be obtained from the condition that the impacted leg does not rebound nor slips at 

impact, which is 

0Swing Swingy y   , 0Swing Swingx x    (5) 

Above conditions can be expressed as 

2 ( ) 0TJ q q   (6) 

Eqs. (4) and (6) are linear in the unknowns and can be solved for q , and  . It is straightforward 

to verify that a unique solution always exists. The solution of (4)–(6) leads to 

1 1 1

2 2 2 2

1 1

2 2 2

[ ( ) ] ( )

[( ) ]

T T

T

q I M J J M J J q D q q

J M J J q

     

  

   



 (7) 

Eq. (7) is an expression for q  in terms of q , which should then be used to re-initialize the 

model (1). The impact model must account for the re-labeling of the robot coordinates (i.e. the swing 

leg becomes the new stance leg and vice versa), this can be expressed by 
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To summarize, the global impact model that includes both the jumps in velocities and the 

permutation of coordinates and velocities shortly writes 
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where 
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(10) 

in which R(q) is the relabeling matrix with appropriate dimension. 

5. Receding Horizon Control Scheme 

In order to apply the receding horizon control scheme, first of all it is necessary to decompose all 

the degrees of freedoms of the model. This procedure is detailed in [13]. In this paper, the three 
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independent degrees of freedoms of the model during swing phase can be subdivided into two parts 

as follows 

2

1 3 2 1 2; [ ]Tz q z q q     (11) 

Where 
1z  and 

2z  are indirectly and directly controllable variables, respectively. The sequence of 

impact instants with ground is denoted by ( )k k Nt 
 with k ft kt  where ft  is the step duration. 

Some target configuration 2

2

fz  is chosen that is to be reached just before the impact instants 

kt  that is 2 2( ) f

kz t z  . This choice is fixed in all the forthcoming developments, in a way, 2

fz  has to be 

considered as a design parameter which should be parameterized. In what follows, the following 

notations are used 
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(12) 

Now, during the step, let us denote by 0   the remaining time before impact. One has the 

following dynamic for  

1 ( ) ft      (13) 

in which (.)  is the generalized impulse function. Consider a control sampling period 0c  such that 

/f c ct N N    (
cN is control horizon). We assume that the decision instants are on the interval of 

1[ , ]k kt t 
as 

 ; 0,1,..., 1 ;i

k k c ct i i N k N       

During the step, at each decision instant i

k , a set of p-parameterized reference trajectories defined 

as follow 

2 2 2 1( , ( ), , ( ), ); [ , ]ref i f i i

k k k kp t      
      (14) 

These trajectories are satisfied for all parameter value p P  the following initial and final 

conditions 
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2 2 2 2( , ( ), , ( ), ) ( )ref i i f i i

k k k kp         

fi
k

fi
k

i
k

ref p 22212 )),(,),(,(     

(15) 

Namely, the reference trajectory 2

ref is updated at each decision instant i

k  to start at the present

2( )i

k , and to join the desired final value 2

f  just before next impact. It is worth noting that p P is 

the remaining free parameter, once the constraints (15) have been structurally imposed, on some 

initial parameterization.  The role of p is clearly to optimize the behavior of the indirectly controlled 

sub-state 
1 . Indeed, imagine that a perfect tracking of the reference trajectory 2

ref is performed over 

1[ , ]i

k kt  . What are the consequences of such tracking on the value of both 
1  and 

2  just before the 

(k + 1) impact? 

For 
2 , one would clearly have, because of the perfect tracking 2 1 2( )ref f

k


  . For the 
1

dynamic, the torso equation extracted from the dynamic model (1), should be considered 

2

3 3 1 2

1 1
( ) cos( )( )
4 2

T TM l I q ml q y g u u      (16) 

where 
TM  is the mass of the torso, l its center of mass length, 

1u  and 
2u  are the torques of the femurs. 

This dynamic can be written as 

)),(,,( 2211 pf i
k

f   (17) 

Integrating (17) starting from the initial condition 1( , ( ))i i

k k  gives the predicted value of 1 1( )k




just before next impact. This can be rewritten formally as follows 

1 1 1 2 2
ˆ ( | ) ( ( ), ( ), , ( ), )i i i f i

k k k k kt p     

      (18) 

Using Eq. (9) together with the predicted values 2 1 2( )ref f

k


   and (18), an expression of the 

predicted value of 1  just after impact can be derived as 

1 1 1 2 2
ˆ ( | ) ( ( ), ( ), , ( ), )i i i f i

k k k k kt p      

      (19) 

The value of the reference trajectory’s parameter ˆ ( )i

kp   is then given by the optimal solution of 

the following quadratic optimization problem 
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2

1 1 1
ˆˆ ( ) min ( | )i i f

k k k
p P Q

p t 




    (20) 

In each decision instant, the above optimization problem together with proper constraints is 

solved. Therefore, with keeping in hand the optimized value of p, the value of 
f

1 and 
f
2  is calculated 

and consequently the limit cycle of the model is defined. 

6. Results and Discussions 

The aim of simulation scenario presented here is the application of the receding horizon control 

described in previous section to biped model. Consider the three link model (Figure 1) with the 

following values of the parameters:  

5.0115105  lrMMm HT  

corresponding to the mass of the legs, the mass of the torso, the mass of the hips, the length of 

the legs and the distance between the center of mass of the hips and the center of mass of the torso. 

The units are kilograms and meters.  

Because presenting of several simulation results makes the article lengthy, we prefer to present 

some of the general results here. Figure 2 depicts the phase portrait of the un-actuated coordinate 

(torso), where we note the convergence to a limit cycle. 

 

 

Figure 2. The phase portrait of the unactuated coordinate 

 

Figure 3 displays the trajectory of angles of joints and angular velocity of them versus time. The 

applied torqueses over a few walking cycles are shown in Figure 4.  
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Figure 3. Angular trajectory and velocity of joints 

 

Figure 4. Applied torques 

 

The simulation results clearly show the convergence of the all trajectories of the torso to an orbit 

which indicates the effectiveness of the method. 

7. Conclusions 

In this paper, for a three link planar limit cycle walker, a receding horizon based controller has 

been implemented. The controller is implemented to control the whole system to sustain its stable 

cyclic walking. The simulation results clearly showed the convergence of the all trajectories of the 

model to an orbital cycle. The approach inherently proves the stability of the motion and there is no 
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need to use of Poincare-like argumentation in the proof of limit cycles.  In the future work we plan to 

extend this method for disturbance rejection of the model under eternal disturbances. 
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